Rock physics diagnostic of Eocene Sokor-1 reservoir in Termit subbasin, Niger

Author:

Hassane AmadouORCID,Ehirim Chukwuemeka Ngozi,Dagogo Tamunonengiyeofori

Abstract

AbstractEocene Sokor-1 reservoir is intrinsically heterogeneous and characterized by low-contrast low-resistivity log responses in parts of the Termit subbasin. Discriminating lithology and fluid properties using petrophysics alone is complicated and undermines reservoir characterization. Petrophysics and rock physics were integrated through rock physics diagnostics (RPDs) modeling for detailed description of the reservoir microstructure and quality in the subbasin. Petrophysical evaluation shows that Sokor-1 sand_5 interval has good petrophysical properties across wells and prolific in hydrocarbons. RPD analysis revealed that this sand interval could be best described by the constant cement sand model in wells_2, _3, _5 and _9 and friable sand model in well_4. The matrix structure varied mostly from clean and well-sorted unconsolidated sands as well as consolidated and cemented sandstones to deteriorating and poorly sorted shaly sands and shales/mudstones. The rock physics template built based on the constant cement sand model for representative well_2 diagnosed hydrocarbon bearing sands with low Vp/Vs and medium-to-high impedance signatures. Brine shaly sands and shales/mudstones were diagnosed with moderate Vp/Vs and medium-to-high impedance and high Vp/Vs and medium impedance, respectively. These results reveal that hydrocarbon sands and brine shaly sands cannot be distinctively discriminated by the impedance property, since they exhibit similar impedance characteristics. However, hydrocarbon sands, brine shaly sands and shales/mudstones were completely discriminated by characteristic Vp/Vs property. These results demonstrate the robust application of rock physics diagnostic modeling in quantitative reservoir characterization and may be quite useful in undrilled locations in the subbasin and fields with similar geologic settings.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3