Nanoconfined methane flow behavior through realistic organic shale matrix under displacement pressure: a molecular simulation investigation

Author:

Sun Zheng,Huang Bingxiang,Li Yaohui,Lin Haoran,Shi Shuzhe,Yu Weichao

Abstract

AbstractAcademic investigations digging into the methane flow mechanisms at the nanoscale, closely related to development of shale gas reservoirs, had attracted tremendous interest in the past decade. At the same time, a good understanding of the complex essence remains challenging, while the broad theoretical scope, as well as application value, possesses great attraction. In this work, with the help of molecular dynamics methods nested in LAMMPS software, a fundamental framework is established to mimic the nanoconfined fluid flow through realistic organic shale matrix. Denoting evident discrepancy with existed contributions, shale matrix in this work is composed of specific number of kerogen molecules, rather than simple carbon-based nanotube. Recently, promotion efforts have been implemented in the academic community with the use of kerogen molecules, however, gas flow simulations are still lacking, and the pore shape in the current papers is always hypothesized as slit pores. The pore-geometry assumption seriously conflicts with the general observation phenomenon according to the advanced laboratory experiments, such as SEM image, AFM technology, that the organic pores tend to have circular pore geometry. In order to fill the knowledge gap, the circular nanopore with desirable pore size surrounded by kerogen molecules is constructed at first. The organic nanopore with various thermal maturity can be obtained by altering the kerogen molecular type, expecting to achieve more physically and theoretically similar to the realistic shale matrix. After that, methane flow simulation is performed by utilization of non-equilibrium molecular dynamics, the methane density as well as velocity distribution under different displacement pressures are depicted. Furthermore, detailed discussion with respect to the simulation results is provided. Results show that (a) displacement pressure acts as a dominant role affecting methane flow velocity and, however, fails to affect methane density distribution, a behavior mainly controlled by molecular–wall interactions; (b) the velocity distribution feature appears to be in line with the parabolic law under high atmosphere pressure, which can be attributed to small Knudsen number; (c) the simulation time will be prolonged with larger displacement pressure imposed on nanoconfined methane. Accordingly, this work can provide profound basis for accurate evaluation of nanoconfined gas flow behavior through shale matrix.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3