Influence of depth on induced geo-mechanical, chemical, and thermal poromechanical effects

Author:

Ezendiokwere Nnamdi E.,Aimikhe Victor J.,Dosunmu Adewale,Joel Ogbonna F.

Abstract

AbstractDelivering efficient and cost-effective drilled and excavated holes require effective prediction of instability along the hole profile. Most drilled and excavated hole stability analyses in the literature are performed for a given zone without considering the influence of depth. This study focused on determining the influence of depth on induced geo-mechanical, chemical, and thermal stresses and strains in drilled or excavated holes. To this end, a new porochemothermoelastic model was developed based on extended poroelastic theory, and the developed model was employed in determining induced strains and stresses for an oil and gas well case study, using data from the literature. The study delineated the different significance levels of geo-thermal-, chemical-, and thermal-induced strains and stresses as depth increased. From the results obtained, it was clear that at shallow depths, chemically induced strains and stress were the most significant formation perturbations responsible for instability of drilled and excavated holes. On the other hand, at deeper depths, geo-mechanical-induced strains and stress were the most predominant. Comparatively, thermally induced strains and stresses were found to be the least significant formation perturbations responsible for instability of drilled and excavated holes. For this case study, the results indicated that chemical strains and stresses were more prominent at depths below 170 m, accounting for more than 50% of the total stresses and strains. At 170 m, both chemical and geo-mechanical stress and strain had equal contributions to the overall stress and strain. However, as depth increased, the percentage contribution of the geo-mechanical component increased and accounted for about 80% of the total strains and stresses at 1000 m, which increased to 98.48% at depths of 6000 m and beyond. The findings of this study will provide guide for future studies on the application of extended poroelasticity theory in solving instability problems of drilled and excavated holes.

Funder

Petroleum Technology Development Fund

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3