Hydrocarbon generation and expulsion process in the deepwater area of the Qiongdongnan Basin of China: insights from artificial thermal maturation experiments

Author:

Zhang Shuncun,Su Long,Zhang Dongwei,Yang Haizhang,Kang Qiangqiang

Abstract

AbstractA series of natural gas fields have been discovered in the deepwater area of the Qiongdongnan Basin (QDNB) of China. However, the natural gas generation process and mechanism still exist controversy. Hence, two semi-open systematic pyrolysis experiments were conducted on a modified apparatus to study the natural gas generation process and mechanism in the deepwater area of the QDNB in this study, including pressured experiments and non-pressure experiments. In the pressured experiments, a stress pressure ranges from 37.6 to 188.2 MPa and fluid pressure ranges from 14.4 to 96.0 MPa based on the thermal evolution model of the QDNB. In non-pressured experiments, only fluid pressure from 2.0 to 5.0 MPa for a hydrous condition was compared with pressured experiments. The experiment results indicate that the pressured experiments could decrease the generated yields, expulsion efficiencies and expulsion process of the liquid hydrocarbons. Moreover, the suppression effect appears to be stronger under high evolution than that of low-maturity stage. Additionally, liptinite preservation exists during the liquid hydrocarbons and natural gas generation at temperature over 420 °C, whereas the liquid hydrocarbon is cracking to gas at temperature over 500 °C as a function of lithostatic stress, fluid pressure, temperature and time. Hence, pressure plays an important role in influencing expulsion efficiencies and expulsion process of the liquid hydrocarbons and natural gas generation in the high maturity stage.

Funder

the National Petroleum Major Projects

Western Light Talent Culture Project of the Chinese Academy of Sciences

Science and Technology Program of Gansu Province

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3