Velocity anisotropy and trend in Niger Delta, Nigeria

Author:

Aniwetalu EmmanuelORCID,Anakwuba Emmanuel,Ilechukwu Juliet

Abstract

AbstractIn geophysical data interpretation, matching the vertical velocity direction from seismic data with borehole-derived velocities is a challenging task because seismic-derived velocities are faster than borehole recorded velocities. This geophysical phenomenon is caused by velocity anisotropy. In this study, we used an empirical approach to estimate the degree of velocity anisotropy in the study area. The results showed that the delta anisotropy in sandstone beds varies from − 2.5% to 7.2% while most of them concentrate between 3.2% and 6.1%. The epsilon ranges between -6.4% and 9.3% while many of them concentrate between 3.2% and 7.2%. The gamma varies from − 6.3% to 7.3% while most of them concentrate between 1.2% and 5%. At shale beds, delta anisotropy varies from − 11.2% to 11.1% but most of them concentrate between 4.3% and 10.5%. The epsilon varies from − 7.2% to 14.5% while most of them concentrate between 4.5% and 10.5%. The gamma varies from 6.4% to 8.2% while majority of them concentrate between 2% and 5.3%. The results indicate that the study area is weakly to moderately anisotropic with shale beds having higher anisotropy values than sandstone beds. This probably results from preferential alignment of clay mineral orientations which also affect in situ velocity propagation. Three distinct velocity gradients (low, moderate and very high) were identified in the study area. These velocities vary erratically but showed northeast–southwest increase in velocities. Thus, the need to derive correction factors for individual wells for improved exploration success.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3