Spontaneous imbibition of modified salinity brine into different lithologies: an improvement of comprehensive scaling used for fractured reservoir simulation

Author:

Bassir Seyed Mojtaba,Shokrollahzadeh Behbahani Hassan,Shahbazi Khalil,Kord Shahin

Abstract

AbstractSpontaneous water imbibition into matrix blocks can be a significant oil recovery mechanism in fractured reservoirs. Many enhanced oil recovery methods, such as injection of modified salinity brine, are proposed for improving spontaneous imbibition efficacy. Many scaling equations are developed in the literature to predict spontaneous imbibition oil recovery. However, almost none of them included the impact of the diversity in ionic composition of injected and connate brines and the blending/interaction of a low salinity imbibing brine with a higher salinity connate brine. In this research, these two issues are included to propose new scaling equations for the scaling of spontaneous imbibition oil recovery by modified salinity imbibing brines. This study uses experimental data of the spontaneous imbibition of modified salinity brines into oil-saturated rock samples with different lithologies containing an irreducible high salinity connate brine. The collected tests from the literature were performed at high temperatures and on aged altered wettability cores. The results of 110 available spontaneous imbibition laboratory experiments (85, 12 and 13 tests on chalks, dolomites and sandstones, respectively) are gathered. This research initially shows the poor ability of three selected convenient scaling equations from the literature to scale imbibition recovery by modified salinity brine. Then, our newly proposed technique to find the scaling equation for spontaneous imbibition recovery by modified salinity brine, during the abovementioned conditions in limestones (Bassir et al. in J Pet Explor Prod Technol 13(1): 79–99, 2023. https://doi.org/10.1007/s13202-022-01537-7) is used in chalks, dolomites and sandstones to develop the three new scaling equations. Finally, a new general equation to scale imbibition recovery by modified salinity brine for all four lithologies is presented. Moreover, for each of the four datasets (chalk, dolomite, sandstone and all the four lithologies), the scaled data by the new equations is matched by two mathematical expressions based on the Aronofsky et al. model and the Fries and Dreyer model. These mathematical expressions can be used to develop transfer functions in reservoir simulators for a more accurate prediction of oil recovery by spontaneous imbibition of modified salinity brine in fractured reservoirs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3