An investigation of the effect of drawdown pressure on sand production in an Iranian oilfield using a hybrid numerical modeling approach

Author:

Nemati Nemat,Ahangari KavehORCID,Goshtasbi Kamran,Shirinabadi Reza

Abstract

AbstractReservoir pressure reduction due to continuous production from oil and gas wells affects the sand production rate. An increase in drawdown pressure and/or a decrease in reservoir pressure increases the sand production rate. Since the problem of sand production is one of the main issues in the Asmari sandstone formation located in one of the oilfields in the southwest of Iran, therefore, in this research, the variations in the sand production rate due to the changes in the reservoir and drawdown pressures were investigated. So, for the first time, a hybrid numerical model of finite difference method (FDM)—discrete element method (DEM)—finite element method (FEM)—computational fluid dynamics (CFD) was developed. This numerical model investigated the increase in the sand production rate due to variations in reservoir pressure with a constant bottom-hole flowing pressure. Then, by performing an extensive sensitivity analysis on different values of reservoir pressure and drawdown pressure, the changes in the sanding rate, the critical drawdown pressure, and the safe drawdown line were determined. The results showed that, if the production flow rate of the well is constant, increasing the drawdown pressure can change the sand production rate only to a certain extent, and more than that, will be produced at a constant rate. Also, adjusting the drawdown pressure within a safe range does not necessarily keep the sand production rate constant at a permissible value for a long time, while by keeping the bottom hole flowing pressure constant within an acceptable range, the sand production rate can be controlled for a longer period.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3