Estimating electrical resistivity from logging data for oil wells using machine learning

Author:

Al-Fakih Abdulrahman,Ibrahim Ahmed FaridORCID,Elkatatny Salaheldin,Abdulraheem Abdulazeez

Abstract

AbstractFormation resistivity is crucial for calculating water saturation, which, in turn, is used to estimate the stock-tank oil initially in place. However, obtaining a complete resistivity log can be challenging due to high costs, equipment failure, or data loss. To overcome this issue, this study introduces novel machine learning models that can be used to predict the electrical resistivity of oil wells, using conventional well logs. The analysis utilized gamma-ray (GR), delta time compressional logs (DTC), sonic shear log (DSTM), neutron porosity, and bulk density. The study utilized a dataset of 3529 logging data points from horizontal oil carbonate wells which were used to develop different machine learning models using random forest (RF) and decision tree (DT) algorithms. The obtained results showed that both models can predict electrical resistivity with high accuracy, over 0.94 for training and testing data. Comparing the models based on accuracy and consistency revealed that the RF model had a slight advantage over the DT model. Based on the data analysis, it was found that the formation resistivity is more significantly impacted by GR logs compared to DTC logs. These new ML models offer a low-cost and practical alternative to estimate well resistivity in oil wells, providing valuable information for geophysical and geological interpretation.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3