Pore pressure prediction using seismic acoustic impedance in an overpressure carbonate reservoir

Author:

Riahi Mohammad AliORCID,Fakhari Mohammad Ghasem

Abstract

AbstractThe drilling engineers favor a quantifiable understanding of the subsurface overpressure zones to avoid drilling hazards. The conventional pore pressure estimation techniques in carbonate reservoirs are prone to uncertainties that affect the calculated pore pressure model resolution and are still far from satisfactory. Basically, in carbonate reservoirs, the effect of chemical process and cementation on porosity is more important than the mechanical compaction, so the conventional pore pressure prediction methods based on the normal compaction trend mostly do not provide acceptable results. Using the conventional methods for carbonate reservoirs can yield large errors, even suggesting a reduction in abnormal pressure in overpressure zones where considerable attention must be paid. Conventional methods need to model density and velocity to calculate the effective and overburden pressures. Converting acoustic impedance to density and velocity is always associated with errors and generally provides low resolution, which adds substantial uncertainties to the pressure prediction. Although pore pressure measurements are usually associated with low resolution, additional error-prone steps can be dropped if used directly. This research outlines the pore pressure estimation of a famous Iranian carbonate reservoir using direct acoustic impedance without inverting it to density and velocity. Finally, this method gives acceptable results in carbonate formations compared to the results of the Repeat Formation Test (RFT) in this region. The results show a zone of overpressure between the two low-pressure intervals of the carbonate reservoir. This result can be of great help in determining reservoir boundaries as well as in planning for drilling trajectory for new wells. Furthermore, the pore pressure estimation results also show pressure reduction in the central part of the seismic section. The proposed approach is a viable alternative to the conventional method and is in line with the geological field report, where the ratio of hydrocarbon potential of total rock on the reservoir sides is higher than its middle part. In this study, we want to emphasize that the calibrated function obtained in our area can be used in similar basins with carbonate reservoirs.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3