Understanding the mobilised oil drainage dynamics inside laboratory-scale and field-scale reservoirs for more accurate THAI process design and operation procedures

Author:

Ado Muhammad RabiuORCID

Abstract

AbstractThe technical and economic validities of the toe-to-heel air injection (THAI) process for heavy oils upgrading and production are yet to be fully realised even though it has been operated at laboratory, pilot, and semi-commercial levels. The findings from Canadian Kerrobert THAI project suggested that there is no proportionality between oil production and air injection rates. However, this conclusion was reached without having to dig deeper into the dynamics of the transport processes inside the reservoir especially that efficient combustion was clearly taking place as the mol% oxygen in the produced gas was negligible. As a result, this study is conducted with aims of identifying the similarities and differences of the dynamics of the transport processes in lab-scale and field-scale reservoirs. For the first time, this study has found oil drainage dynamics inside the reservoir to be both scale-dependent and operation-dependent. For the laboratory-scale numerical model E, what is clearest is that all of the head of the oil flux vectors are either totally vertically directed or slightly inclined and pointing upward towards the heel. None of them is pointing backward towards the toe of the HP well. Thus, it is apparent that oil drainage pattern in this laboratory-scale model E is efficient as all the mobilised upgraded oil, including from the base of the combustion cell, is produced as the combustion front advances in the toe-to-heel manner. However, the combustion front has a backward-leaning shape which is an indicator that it is propagating even inside the HP well. This implies that the process is operating in an unstable, inefficient, and unsafe mode. These two opposing patterns at laboratory-scale must be resolved to ensure healthy combustion front propagation with efficient oil drainage and production rates are achieved. At the field scale (i.e. model F), this study has shown for the first time that there are actually two mobile oil zones: the one ahead of the combustion front with lower oil flux magnitude (i.e. MOZ) and the one containing large pool of mobilised partially upgraded oil at the base of the reservoir just behind the toe of the HP well. The above findings in model F show that there is conflicting dynamics about the goal of achieving large oil production rates downstream of the combustion front with the propagation of forward-tilting stable, safe, and efficient combustion front. If the combustion is to be optimally sustained, then most of the mobilised upgraded oil might be lost going in the wrong direction towards the region behind the toe of the HP well. In actual reservoir in the field, shale with very low permeability and porosity must be present behind the toe in order for the large pool of mobilised upgraded oil that is continuously draining from the vertical adjacent planes to be forced into the toe of the HP well. As a result, to balance these two conflicting dynamics of upward-tilted combustion front going longitudinally towards the heel of the HP well and the mobilised oil draining down at an angle towards the region behind the toe of the HP well, future studies are essentially required. These are proposed and also listed under the conclusion section in order to ensure thorough design and operation procedures for the THAI process are established.

Funder

deanship of scientific research, king faisal university

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3