Analysis of nonlinear effects in fluid flows through porous media

Author:

Zolotukhin A. B.ORCID,Gayubov A. T.ORCID

Abstract

AbstractThis article examines the nonlinear effects of fluid flow in a porous medium, governed by a new semi-analytical equation, from three aspects: equation derivation, experimental verification, and macroscale simulation modelling. The rigorous derivation of the new equation is presented with a semi-analytical approach in which the gas slippage effect and inertial forces are described. The latter effect is controlled by Fochheimer number, which is defined as a product of tortuosity and Reynolds number. The new equation successfully predicts the deviations from Darcy’s law in low-permeability media when the gas slippage effect occurs. The Klinkenberg gas slippage factor is obtained as a function of porous media’s structural parameter (porosity and intrinsic permeability) and gas property (mean free path of gas molecules). The equation validations are performed by core flow experiments for a wide range of reservoir properties, which yield good matching relationship between modelled and observed values. In addition, the proposed semi-analytical equation is used to simulate gas flow in the radial model.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3