A novel and cleaner bio-polymer Gum Karaya-based Silica nanocomposite fracturing fluid for high-temperature application

Author:

Chauhan GeetanjaliORCID,Ojha Keka,Prasad Ch. Vara

Abstract

AbstractA novel polymer nanocomposite has been synthesized in the present study using a bio-polymer Karaya and inorganic SiO2 nanoparticles via sonication for application as a fracturing fluid in stimulating oil and gas wells. Gum Karaya (KG), an acidic polysaccharide, has been investigated for its structural, morphological and rheological characteristics, and the results have been compared with prepared KG–SiO2 nanocomposite at different SiO2 dosing for improved structure, viscoelasticity, viscosity and temperature stability. Steady shear rheology test depicted pseudoplastic nature, while oscillatory study confirms gel characteristics and weak dependence of storage and loss moduli on frequency for all the prepared samples. Dominance of elasticity over viscous nature of the gel assures efficient solid transporting/suspending capability. Experimental results showed that the rheological characteristics of the synthesized gel is comparable with Guar and CMHPG over the shear and temperature ranges under study and suitable for temperatures above 150 °C and pressure conditions. Also, polymer breaking and sandpack regained permeability tests proved synthesized gels to be a cleaner with less residue as compared to the other two.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3