Lattice Boltzmann simulation of cross-linked polymer gel injection in porous media

Author:

Kamel Targhi ElaheORCID,Emami Niri Mohammad,Rasaei Mohammad Reza,Zitha Pacelli L. J.

Abstract

AbstractThis study addresses the critical challenge of excessive water production in mature oil and gas reservoirs. It focuses on the effectiveness of polymer gel injection into porous media as a solution, with an emphasis on understanding its impact at the pore scale. A step-wise Lattice Boltzmann Method (LBM) is employed to simulate polymer gel injection into a 2D Berea sample, representing a realistic porous media. The non-Newtonian, time-dependent characteristics of polymer gel fluid necessitate this detailed pore-scale analysis. Validation of the simulation results is conducted at each procedural step. The study reveals that the methodology is successful in predicting the effect of polymer gel on reducing permeability as the gel was mainly formed in relatively larger pores, as it is desirable for controlling water cut. Mathematical model presented in this study accurately predicts permeability reductions up to 100% (complete blockage). In addition, simulations conducted over a wide range of gelation parameters, TD_factor from 1 to 1.14 and Threshold between 0.55 and 0.95, revealed a quadratic relationship between permeability reduction and these parameters. The result of this research indicates LBM can be considered as promising tool for investigating time-dependant fluids on porous media.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3