Factors affecting casing equivalent stress in multi-cluster fracturing of horizontal shale gas wells: finite element study on Weirong Block, southern Sichuan Basin, China

Author:

Yang Zhao,Sun Rui

Abstract

AbstractMulti-cluster fracturing technology was often used in horizontal well reservoir reconstruction to achieve production increase, which also affected casing equivalent stress distribution. This paper focuses on multi-cluster fracturing and establishes a fracturing model in line with the reality. The three-dimensional finite element model of multi-cluster fracture-formation-cement sheath-casing was proposed, the influence of cluster spacing and fracturing cluster number on casing equivalent stress was studied. On this basis, a single segment 8-cluster three-dimensional finite element model was developed. The influence of rock elastic modulus, casing inner wall pressure, geostress change and elastic modulus of cement sheath on casing equivalent stress was simulated from two aspects of uniform and non-uniform extrusion of wellbore. Actual data was used and analyzed for the fracturing section of a well in Weirong Block, southern Sichuan Basin, China. The results showed that the casing equivalent stress decreased with the increase of fracture dip angle. The casing equivalent stress increased with the increase of cluster spacing; however, it decreased with the increase of rock elastic modulus. The casing equivalent stress increased with the increase of casing wall pressure. Also, the cracks extrude the casing evenly did not affect the change on casing equivalent stress. It was also found that, when casing was uniformly squeezed by multiple fractures, the difference of ground stress had little effect on casing equivalent stress, while non-uniform extrusion had greater effect on casing equivalent stress. Further, when there was no wellhead pumping pressure, the casing equivalent stress increased with the increase of the elastic modulus of the cement sheath, and decreased on the contrary. The elastic modulus of rock was lower than that of cement sheath, and the casing equivalent stress increased with the increase of the elastic modulus of cement sheath, and decreased on the contrary. The research results had certain guiding significance for the prevention and control of casing damage in fracturing section.

Funder

PetroChina Innovation Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3