Improvement of a multiphase flow model for wellhead chokes under critical and subcritical conditions using field data

Author:

Leporini Mariella,Terenzi Alessandro,Marchetti Barbara

Abstract

AbstractThe characterization of the multiphase flow through valves and orifices is a problem yet to be solved in engineering design, and there is a need for a prediction model able to simulate the complexity of this kind of flow in relation to fluid thermodynamic behaviour, and applicable to different incoming stream conditions and compositions. The present paper describes the development of a global model for the calculation of the discharge coefficient of orifices and choke valves operating under two- and three-phase flow as well as critical and subcritical conditions. The model generalizes the hydrovalve model developed by Selmer-Olsen et al. (in: Wilson (ed) Proceedings of 7th international conference on Multiphase Production, BHR Group, pp 441–446, 1995) and the Henry–Fauske (J Heat Transfer 93: 179–187, 1971. 10.1115/1.3449782) non-equilibrium model on the basis of an updated definition of the discharge coefficient. The model has been adapted to real choke valve geometries, by fitting the discharge coefficient and model parameters using field data from three production wells. The model developed is a global quartic function with different constants for the different valve geometries. The new discharge coefficient allows to simulate field data with high accuracy.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wellhead and Valve Technology Principles, Problems and Practices;Day 3 Thu, November 23, 2023;2023-11-21

2. Transient Analysis of Fluid Flow through a Closing Blowout Preventer Using Coupled Domain Computational Fluid Dynamics;SPE Drilling & Completion;2023-05-31

3. Case Studies;Flow Analysis for Hydrocarbon Pipeline Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3