CO2 storage capacity estimation under geological uncertainty using 3-D geological modeling of unconventional reservoir rocks in Shahejie Formation, block Nv32, China

Author:

AlRassas Ayman MutaharORCID,Ren Shaoran,Sun Renyuan,Thanh Hung Vo,Guan Zhenliang

Abstract

AbstractUnderground CO2 storage is a promising technology for mitigating climate change. In this vein, the subsurface condition was inherited a lot of uncertainties that prevent the success of the CO2 storage project. Therefore, this study aims to build the 3D model under geological uncertainties for enhancing CO2 storage capacity in the Shahejie Formation (Es1), Nv32 block, China. The well logs, seismic data, and geological data were used for the construction of 3-D petrophysical models. The target study area model focused on four units (Es1 × 1, Es1 × 2, Es1 × 3, and Es1 × 4) in the Shahejie Formation. Well logs were utilized to predict petrophysical properties; the lithofacies indicated that the Shahejie Formation units are sandstone, shale, and limestone. Also, the petrophysical interpretation demonstrated that the $$Es1$$ E s 1 reservoir exhibited high percentage porosity, permeability, and medium to high net-to-gross ratios. The static model showed that there are lateral heterogeneities in the reservoir properties and lithofacies; optimal reservoir rocks exist in Es1 × 4, Es1 × 3, and Es1 × 2 units. Moreover, the pore volume of the Es1 unit was estimated from petrophysical property models, ranging between 0.554369 and 10.03771 × 106 sm3, with a total volumetric value of 20.0819 × 106 sm3 for the four reservoir units. Then, the 100–400 realizations were generated for the pore volume uncertainties assessment. In consequence, 200 realizations were determined as an optimal solution for capturing geological uncertainties. The estimation of CO2 storage capacity in the Es1 formation ranged from 15.6 to 207.9 × 109 t. This result suggests the potential of CO2 geological storage in the Shahejie Formation, China.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3