Peculiarities of Tertiary petroleum systems evolution under prograding shelf environment on the continental margin of the East Siberian Sea

Author:

Mustaev R. N.ORCID,Lavrenova E. A.,Kerimov V. Yu.,Mamedov R. A.

Abstract

AbstractThe upper part of the sedimentary cover within the East Siberian Sea shelf comprises Cenozoic clinoform deposits, which accumulated in passive continental margin settings. In the Eastern Arctic, the productivity of clinoform deposits has been proved on the Alaska North Slope and in the Beaufort–Mackenzie Basin. Considering that Cenozoic clinoform deposits are widely represented in the Russian part of the Eastern Arctic, they undoubtedly attract considerable interest from the standpoint of hydrocarbons prospecting. However, despite increasingly closer attention to this interval of the sedimentary section, it is still poorly understood due to its complicated geology. The lack of drilled wells in the region imposes a considerable limitation on an understanding of sedimentary basins development. In this situation, geophysical data become the primary source of information for building geologic models in the Russian sector of the Eastern Arctic. An assessment of hypothetical Cenozoic petroleum systems of the East Siberian Sea is the main objective of this paper. It is to be said research performed under high uncertainty of input data. The results obtained from basin analysis and numerical modeling indicate the possibility that an active petroleum system may exist in the Cenozoic sedimentary wedge of the East Siberian Sea. The outlook for the clinoform complex largely depends on the source rock maturity, i.e., higher prospects should be expected in areas where the prograding wedge has maximum thickness. Considering all factors (reservoir quality prediction, proximity to a hydrocarbon kitchen, timing), the Eocene–Oligocene part of the sedimentary section appears to offer the greatest promise within the study area. Here, predominantly oil accumulations may be expected at a depth of 2.5–3.5 km below sea bottom.

Funder

rfbr

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3