Sedimentary facies, depositional environments and conceptual outcrop analogue (Dam Formation, early Miocene) Eastern Arabian Platform, Saudi Arabia: a new high-resolution approach

Author:

Ali Syed HaroonORCID,Abdullatif Osman M.,Babalola Lamidi O.,Alkhaldi Fawwaz M.,Bashir Yasir,Qadri S. M. Talha,Wahid Ali

Abstract

AbstractThis paper presents the facies and depositional environment of the early Miocene Dam Formation, Eastern Arabian platform, Saudi Arabia. Deposition of Dam Formation (Fm.) was considered as a restricted shallow marine deposition. Few studies suggest the role of sea-level change in its deposition but were without decisive substantiation. Here, we describe the facies and high-resolution model of Dam Fm. under varying depositional conditions. The depositional conditions were subjected to changing relative sea level and tectonics. High-resolution outcrop photographs, sedimentological logs, and thin sections present that the mixed carbonate–siliciclastic sequence was affected by a regional tectonics. The lower part of Dam Fm. presents the development of carbonate ramp conditions that are represented by limestones and marl. The depositional conditions fluctuated with the fall of sea level, and uplift in the region pushed the siliciclastic down-dip and covered the whole platform. The subsequent rise in sea level was not as pronounced and thus allowed the deposition of microbial laminites and stromatolitic facies. The southeast outcrops, down-dip, are more carbonate prone as compared to the northwest outcrop, which allowed the deposition of siliciclastic-prone sedimentation up-dip. All facies, architecture, heterogeneity, and deposition were controlled by tectonic events including uplift, subsidence, tilting, and syn-sedimentary faulting, consequently affecting relative sea level. The resulting conceptual outcrop model would help to improve our understanding of mixed carbonate–siliciclastic systems and serve as an analogue for other stratigraphic units in the Arabian plate and region. Our results show that Dam Fm. can be a good target for exploration in the Northern Arabian Gulf.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3