Abstract
AbstractThe conventional method of casing selection is based on availability and/or order placement to manufacturers based on certain design specifications to meet the anticipated downhole conditions. This traditional approach is very much dependent on experience as well as constructing oil and gas wells at minimum budget. However, this material selection approach is very limited in meeting the requirement of shale gas wells. This study utilises the material performance indices and ANSYS Granta database to examine three different casing pipe buckling scenarios including the buckling with corrosion potentials and buckling with impact and long-term service temperature conditions. Consequently, numerical evaluations of the response of the selected casing materials established the stress, deformations, and safety factor for the first scenario (shale gas well with buckling tendencies). The significance of this new method is added advantage in terms of integrating materials’ physicochemical, thermal and mechanical properties and the casing functional performance to establish ideal selection within the design space or requirements. Results obtained in this study show that there are optional materials that outperform the most common casing grades (P110 and Q125) utilised in shale gas development in terms of both safety and cost. This study established a procedure for evaluating optimum performance between cost, safety, performance indices and materials’ physical and mechanical properties for a typical well design scenario. This procedure will assist the design engineer to justify the selection of a particular material(s) safely and technically for a given shale well casing application in future. In all the 10 materials investigated, even though the P110 (API casing grade) meets the buckling design scenario and widely used in shale gas well development, there are many alternative viable material candidate options that outperform P110 Grade with the best material candidate studied in this work being BS 145.
Funder
petroleum technology development fund
Publisher
Springer Science and Business Media LLC
Subject
General Energy,Geotechnical Engineering and Engineering Geology
Reference55 articles.
1. American Petroleum Institute (API) (2006) API SPEC 5CT: 2006. Specification for casing and tubing, 8th edn. API, Washington
2. Ashby M, Melia H, Figuerola M, Philips L, Gorse S (2018) The CES EduPack materials science and engineering package
3. Allwood JM, Ashby MF, Gutowski TG, Worrell E (2011) Material efficiency: a white paper. Resour Conserv Recycl 55(3):362–381
4. Bokor B, Sharma A, Hofmann J (2020) Experimental investigations on the concrete edge failure of shear loaded anchor groups of rectangular and non-rectangular configurations. Eng Struct 222:111153
5. Çalışkan H, Kurşuncu B, Kurbanoğlu C, Güven ŞY (2013) Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater Des 45:473–479
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献