Numerical simulation of hydraulic fracture propagation after thermal shock in shale reservoir

Author:

Wu Jianfa,Zeng Bo,Chen Liqing,Huang Haoyong,Guo Yintong,Guo Wuhao,Song Wenjing,Li Junfeng

Abstract

AbstractThe scale of propagation of hydraulic fractures in deep shale is closely related to the effect of stimulation. In general, the most common means of revealing hydraulic fracture propagation rules are laboratory hydraulic fracture physical simulation experiments and numerical simulation. However, the former is difficult to meet the real shale reservoir environment, and the latter research focuses mostly on fracturing technology and the interaction mechanism between hydraulic fractures and natural fractures, both of which do not consider the influence of temperature effect on hydraulic fracture propagation. In this paper, the hydraulic fracturing process is divided into two stages (thermal shock and hydraulic fracture propagation). Based on the cohesive zone method, a coupled simulation method for sequential fracturing of deep shale is proposed. The effects of different temperatures, thermal shock rates, and times on the scale of thermal fractures are analyzed. As well as the effects of horizontal stress difference and pumping displacement on the propagation rule of hydraulic fractures. The results show that the temperature difference and the thermal shock times determine the size and density of thermal fractures in the surrounding rock of the borehole, and the number of thermal fractures increases by 96.5% with the increase of temperature difference. Thermal fractures dominate the initiation direction and propagation path of hydraulic fractures. The main hydraulic fracture width can be increased by 150% and the length can be increased by 46.3% by increasing the displacement; the secondary fracture length can be increased by 148.7% by increasing the thermal shock times. This study can provide some inspiration for the development of deep shale by improving the complexity of hydraulic fractures.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3