A novel method for improving recovery of heavy oil reservoirs with high water cut based on polymer gel-assisted CO2 huff and puff

Author:

Lu Haiwei,Wang Zhenyuan,Peng Tong,Zheng Jiapeng,Yang Xiaoliang,Qin XiaopingORCID

Abstract

AbstractA novel enhanced oil recovery (EOR) method based on polymer gel-assisted carbon dioxide (CO2) huff and puff was developed aiming to improve the development effect of heavy oil reservoirs with high water cut. The polymer gel prepared using partially hydrolyzed polyacrylamide (HPAM), hexamethylenetetramine, phenol, resorcinol, oxalic acid, and thiocarbamide as raw materials had a special network structure to overcome the challenge of significant heterogeneity in heavy oil reservoirs. The strength of polymer gel reached the maximum value 20,000 mPa·s within 22 h. The temperature resistance and salt resistance of polymer gel directly determined the plugging effect. The polymer gel was placed for 190 days at 85 ℃, and its apparent viscosity retention rate was 66.4%. The salt resistance experiments showed that the apparent viscosity retention rate of this polymer gel at 1.8 wt % NaCl, 0.045 wt % CaCl2, 0.045 wt % MgCl2 was 71.3%, 78.5%, 71.4%, respectively. Huff and puff experiments confirmed that this method could be used to increase the sweep volume and improve the oil displacement efficiency of heavy oil reservoirs with high water cut. Furthermore, the EOR of this method was better than that of water huff and puff, polymer gel huff and puff or CO2 huff and puff.

Funder

Sichuan University of Science and Engineering

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3