Improved ST-FZI method for permeability estimation to include the impact of porosity type and lithology

Author:

Amraei Hamed,Falahat RezaORCID

Abstract

AbstractPermeability represents the flow conductivity of a porous media. Since permeability is one of the most vital as well as the complex properties of a hydrocarbon reservoir, it is necessary to measure/estimate accurately, rapidly and inexpensively. Routine methods of permeability calculation are through core analysis and well tests, but due to problems and weaknesses of the aforementioned methods such as excessive costs and time, these are not necessarily applied on neither in all wells of a field nor in all reservoir intervals. Therefore, log-based approaches have been recently developed. The goal of this research is to provide a flowchart to estimate permeability using well logs in one of Iranian south oil fields and finally to introduce a new algorithm to estimate the permeability more accurately. Permeability is firstly estimated using artificial neural network (ANN) employing routine well logs and core data. Subsequently, it is estimated using Stoneley-Flow Zone Index (ST-FZI) and is compared with the results of core analysis. Correlation coefficients in permeability estimation by artificial neural network and Stoneley-FZI are R2 = 0.75 and R2 = 0.85, respectively. On the next step, an improved algorithm for permeability prediction (improved ST-FZI) is presented that includes the impact of lithology and porosity type. To improve the permeability estimation by ST-FZI method, electro-facies clustering based on MRGC method is employed. For this purpose, rock pore typing utilizing VDL and NDS synthetic logs is employed that considers the porosity types and texture. The VDL log separates interparticle porosity from moldic and intra-fossil porosities and washes out and weak rock-type zones. Employing MRGC method, three main facies are considered: good-quality reservoir rock, medium-quality reservoir rock and bad-quality (non-reservoir) rocks. Permeability is then estimated for each group employing ST-FZI method. The estimated permeability log by improved ST-FZI method shows better match with the measured permeability (R2 = 0.93). The average error between estimated and measured permeability for ANN, ST-FZI method and improved ST-FZI method is 1.83, 1.18 and 0.796, respectively. The increased correlation is mainly due to involving the impact of porosity types on improved ST-FZI method. Therefore, it is recommended to apply this algorithm on variety of complicated reservoir to analyze its accuracy on different environments.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Reference28 articles.

1. Aghanbati A (2004) Geology of Iran. Geological Survey, 1st Edn, Tehran

2. Al-Adani N and Barati A (2003) New hydraulic unit permeability approach with DSI. In: SPWLA 9th formation evaluation symposium, Japan pp. 25–26.

3. Ameri S, Aminian K, Avary KL, Bilgesu HI, Hohn ME, McDowell RR, Matchen DL (2001) Reservoir characterization of upper devonian gordon sandstone, Jackonburg Stringtown Oil Field. West Virginia University, Northwestern Virginia

4. Anselmetti FS, Eberli GP (1999) The velocity-deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs. AAPG Bull 83(3):450–466

5. Arbogast JS, Franklin MH (1999) Artificial neural networks and high speed resistivity modeling software speeds reservoir characterization. Pet Eng Int 72(05):57–61

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3