Evaluation of surface activity of rhamnolipid biosurfactants produced from rice bran oil through dynamic surface tension

Author:

Safari Paria,Hosseini Morteza,Lashkarbolooki Mostafa,Ghorbani Monireh,Najafpour Darzi Ghasem

Abstract

AbstractThe use of low-cost carbon substrates such as agricultural residues can drastically lower the cost of biosurfactant production. In this study, rice bran oil extracted from agricultural waste was used as a renewable carbon source for biosurfactant production using Pseudomonas aeruginosa PTCC 1340. The biosurfactant was characterized as a glycolipid derivative by thin-layer chromatography and Fourier transform infrared spectroscopy. The yields of biosurfactant from rice bran oil (YRL/S) and biosurfactant to biomass (YRL/X) were 0.246 and 2.81 (g/g), respectively. In addition, the surface activity of the produced biosurfactant was studied using dynamic surface tension measurements and a mono-exponential decay model by estimating the relaxation time of the biosurfactants at the interface. The biosurfactant exhibited acceptable performance in reducing surface tension, as confirmed by examining the dynamic surface tension state and the lowest adsorption time without being affected by the type of salt or concentration. It was found that the adsorption/relaxation of biosurfactants at the interface was considerably affected by the biosurfactant concentration. The produced biosurfactant by the strain considerably reduced the surface tension of water from 70.46 to 25.86 mN/m with a critical micelle concentration (CMC) of 0.09 g/L with rice bran oil as a carbon source. The biosurfactant was also found to be highly effective in suppressing one of the most destructive pathogenic fungi, Macrophomina phaseolina, in terms of its environmental impact. The enhanced physicochemical properties of biosurfactants, such as potential antifungal properties, oil displacement properties, and surface tension-reducing ability, demonstrate the potential of this biosurfactant as a bio-adjuvant and perfect replacement for chemical surfactants in addressing oil spills and environmental decontamination processes.

Funder

Babol Noshirvani University of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3