Diagenetic impacts on hydraulic flow unit properties: insight from the Jurassic carbonate Upper Arab Formation in the Persian Gulf

Author:

Sharifi-Yazdi Masoud,Rahimpour-Bonab Hossain,Nazemi Maziyar,Tavakoli Vahid,Gharechelou Sajjad

Abstract

AbstractThe Upper Arab reservoir in the central Persian Gulf was examined for depositional, diagenetic, sequence stratigraphic and petrophysical features. This succession is composed of eight sedimentary facies that deposited on a carbonate ramp. Three-third-order sequences prograded across the Late Jurassic Arab Platform. This interval was complicated by multiple diagenetic phases including eogenesis and mesogenesis that strongly influenced reservoir properties. Dolomitization, dissolution, cementation and compaction are major diagenetic processes which played an essential role in increasing or decreasing reservoir quality. Four hydraulic flow units (HFU) were determined by flow zone indicator approach for evaluation of the reservoir quality. In addition to depositional features, diagenetic alterations have changed general HFUs characterizations such as porosity, permeability and pore-throat size. Likewise, via Lucia classification, HFUs of the Arab reservoir were grouped based on the integration of geological and petrophysical attributes in detail. Among diagenetic processes, dolomitization and dissolution have positive effects while cementation and stylolitization have a negative effect on HFUs characteristics in the studied reservoir. Put another way, since diagenetic alterations lead to the intensification of heterogeneity in carbonate reservoir, prediction of the relationship between pore type and pore throat size is a problematic issue. Recognition of the hydraulic flow units considered as a practical tool for grouping reservoir rocks and characterizing heterogeneity using porosity and permeability relationship. Finally, specifying of the contribution of various diagenetic imprints in each hydraulic flow unit in a sequence stratigraphic framework results in a conceptual reservoir model that could predict reservoir quality variations across the field.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3