Progress and development of particle jet drilling speed-increasing technology and rock-breaking mechanism for deep well

Author:

Fang Tiancheng,Ren Fushen,Liu Hanxu,Zhang Yuan,Cheng Jianxun

Abstract

AbstractIncreasing drilling speed and efficiency of hard formation for deep and ultra-deep well is one of the international recognized drilling problems and key technologies to be tackled urgently. Particle jet impact drilling technology is an efficient non-contact rock-breaking method to overcome slow drilling speed, which has great development and application potential in drilling speed-increase of hard formation and deep well. High efficiency drilling technology and rock-breaking speed-increase mechanism in high temperature, high pressure and high hardness formations of deep and ultra-deep wells were mainly focused and keynoted in this paper. With extensive investigation of domestic and foreign literature, the working principle, key technical devices, deep-well-rock mechanical characteristic, unconventional constitutive model and rock-breaking mechanism of particle jet impact drilling technology were analyzed, which proved the feasibility and high efficiency for deep and hard stratum, and also, dynamic failure mechanism of rock needs to be elaborated by constructing the constitutive model with high temperature and pressure. Meanwhile, the major problems to be solved at present and development direction future were summarized, which mainly included: miniaturization of drilling equipment and individualization of drilling bit; optimization of jet parameters and the evaluation method of rock-breaking effect; establishment of mechanical property and unconventional constitutive model of deep-well-rock; rock-breaking mechanism and dynamic response under particle jet coupling impact. The research can help for better understanding of deep-well drilling speed-increasing technology and also promote the development and engineering application of particle jet impact drilling speed-increase theory and equipment.

Funder

National Natural Science Foundation of China

Guiding Innovation Fund Project of Northeast Petroleum University

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrode structural effects on the mechanism of high-voltage pulse rock breaking;Journal of Applied Geophysics;2024-08

2. Growth mechanism of high‐voltage electric pulse rock breaking 3D plasma channel in drilling fluid environment;Contributions to Plasma Physics;2024-06-24

3. Experimental investigation on the rock breaking mechanism of electrode bit by high‐voltage electric pulses;Contributions to Plasma Physics;2024-03-31

4. Working mechanism and experimental study of split bit;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-03-03

5. Study on the rock-breaking characteristics of high-energy pulsed plasma jet for granite;Geoenergy Science and Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3