Demagnetizing the drill string magnetic interference in Far North and in Pakistan

Author:

Lalji Shaine MohammadaliORCID,Haneef Javed,Khan Muhammad Arqam,Ali Syed Imran

Abstract

AbstractDrilling in Barents Sea proves to be a challenging task, as this region is situated in auroral zones having high geomagnetic latitude, where magnetic interferences develop from magnetic field and magnetic materials inside subsurface are quite common. For this region, monitoring of magnetic field is utterly significant as any fluctuations can distort the tool sensor performance with ultimately enlarging the uncertainty in azimuth. To guide a well to its desire location, measurement while drilling (MWD) tool needs to be operated with utmost precision; however, its accuracy compromises as a result of magnetic interferences from drill string and nearby magnetic material. The performance of this tool depends upon its sensors. Any distortion in sensor performance can lead to problems such as multiple sidetracking and increase in overall project cost. Furthermore, the same BHA was also placed in a region of Pakistan and the impact drill string interference was observed. It was discovered that the interferences that had tremendous impact on magnetometer Z-component in Barents Sea had a drastic reduction in the region of Pakistan as it is situated in low latitude, where uncertainty in azimuth is low. In this work, an exemplary bottom-hole assembly (BHA) was analyzed and the impact of individual drill string components interferences was observed on the MWD sensors. It was perceived that the bit was responsible for creating the major distortion in MWD sensor. Apart from that, it was also investigated that the location of the well also plays a vital role in this distortion. This intervention in the sensors is created by a vast difference between the used actual length and the recommended length of nonmagnetic drill collar in the BHA. Numerically, it was investigated that if the physical distance between the sensors and bit is increased, then this interference is reduced. It was also apparent that the Z-component of the magnetometer was utterly distorted because of this interference, while the X- and Y-components were proved to be independent of these interferences. It was further examined that the effects of latitude and longitude play a significant role in the course of changing the impact of these errors on magnetization.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Reference13 articles.

1. Beleggia M, De Graef M, Millev Y (2006) Demagnetization factors of the general ellipsoid: an alternative to the Maxwell approach. Phil Mag 86(16):2451–2466

2. Berchan BA (2015) Drilling, completion, intervention and P&A design and operations. NTNU, Trondheim

3. Edvardsen I (2015) Effects of geomagnetic disturbances on offshore magnetic directional wellbore positioning in the Northern Auroral Zone. The Arctic University of Norway, Tromso

4. Edvardsen I, Nyrnes E, Johnsen MG, Hansen TL (2013) Improving the accuracy and reliability of MWD/magnetic-wellbore-directional surveying in the Barents sea. In: Annual technical conference and exhibition 2013. SPE, New Orleans

5. Ekseth R (1998) Uncertainties in connection with the determination of wellbore positions. Norwegian University of Science and Technology, Trondheim

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3