Characterization based machine learning modeling for the prediction of the rheological properties of water-based drilling mud: an experimental study on grass as an environmental friendly additive

Author:

Ismail AtifORCID,Rashid Hafiz Muhammad Awais,Gholami Raoof,Raza Arshad

Abstract

AbstractThe successful drilling operation depends upon the achievement of target drilling attributes within the environmental and economic constraints but this is not possible only on the basis of laboratory testing due to the limitation of time and resources. The chemistry of the mud decides its rheological potential and selection of the techniques required for recycling operations. Conductivity, pH, and photometer testing were performed for the physio-chemical characterization of the grass to be used as an environmental friendly drilling mud additive. In this study, different particle sizes (75, 150, and 300 µm) of grass powder were mixed in mud density of 8.5, 8.6, and 8.7 ppg in the measurement of gel strength and viscosity of drilling mud. The grass additive was added in different weight conditions considering no additive, 0.25, 0.5, and 1 g to assess the contribution of grass on the gel strength and viscosity of the drilling mud. The machine learning techniques (Multivariate Linear Regression Analysis, Artificial Neural Network, Support Vector Machine Regression, k-Nearest Neighbor, Decision Stump, Random Forest, and Random Tree approaches) were applied to the generated rheological data. The results of the study show that grass can be used for the improvement of the gel strength and viscosity of the drilling mud. The highest improvement of the viscosity was seen when grass powder of 150 µm was added in the 8.7 ppg drilling mud in 0.25, 0.5, and 1 g weights. The gel strength of the drilling mud was improved when the grass additive was added to the drilling mud 8.7 ppg. Random forest and Artificial Neural Network had the same results of 0.72 regression coefficient (R2) for the estimation of viscosity of the drilling mud. The random tree was found as the most effective technique for the modeling of gel strength at 10 min (GS_10min) of the drilling mud. The predictions of Artificial Neural Network had 0.92 R2 against the measured gel strength at 10 s (GS_10sec) of the drilling mud. On average, Artificial Neural Network predicted the rheological properties of the mud with the highest accuracy as compared to other machine learning approaches. The work may serve as a key source to estimate the net effect of grass additives for the improvement of the gel strength and viscosity of the drilling mud without the performance of any large number of laboratory tests.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3