Applicability of Fe3O4 nanoparticles for improving rheological and filtration properties of bentonite-water drilling fluids in the presence of sodium, calcium, and magnesium chlorides

Author:

Rezaei Alireza,Nooripoor Vahid,Shahbazi Khalil

Abstract

AbstractThere are impressive efforts in conjunction with improving rheological and filtration properties of Water-Based Drilling Fluids (WBDFs) employing Nano-Particles (NPs). However, NPs’ performance in the presence of different salts has not been well assessed. This study intends to investigate the effect of Fe3O4 NPs on rheological and filtration properties of bentonite-water drilling fluids exposed to NaCl, CaCl2, and MgCl2 salts. To reach the goal specified for this study, three 0.5, 1 and 2 wt% NP concentrations, separately, were added into a salt-free and three salt-contaminated bentonite-water drilling fluids (four base fluids). So, 16 different drilling fluids were prepared for this research. The rheological models obtained by six shear rates, apparent viscosity, plastic viscosity, yield point, gel strength, and cutting carrying ability of all the drilling fluids are described in the paper. Moreover, API fluid losses (under 100 psi differential pressure), the cakes’ thickness, and the cakes’ permeability compared to the same as the salt-free base fluid, are interpreted to evaluate the NPs’ performance on filtration control ability of all the drilling fluids. The results showed that the salts weaken the rheological and filtration properties of the salt-free base fluid, while Fe3O4 NPs sustain and improve the rheological properties of salt-free and salty drilling fluids, significantly. Nano-sized Fe3O4 weakens the filtration properties of the salt-free WBDF, but it is a suitable filtration control agent for salt-contaminated drilling fluids. In a sentence, nano-Fe3O4 is a suitable additive to enhance salty-WBDFs’ performance.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3