Vibration analysis of simultaneous drilling and reaming BHA

Author:

Al Dushaishi Mohammed F.ORCID,Stutts Daniel S.

Abstract

AbstractThe drillstring used in the oil and gas exploration is a complex structure due to the different forces acting on it. One of the primary sources of drillstring vibrations is the cutting forces caused by the drill bit contact with the rock formation. In some drilling applications, such as hole enlargement and underreaming, the source of the cutting action originates from the drill bit as well as the reamer which increases the dynamic complexity of the drillstring. This paper’s objective is to investigate the torsional vibration behaviors of the bottom hole assembly (BHA) under simultaneous drilling and reaming. More specifically, it addresses the effect of the reamer interaction with the wellbore during drilling operations on the overall torsional vibrations of the BHA. The BHA was modeled as a torsional shaft subjected to a localized external force due to the reamer cutting action, and a point load external force due to the drill bit interaction with the formation. The equation of motion was obtained using Hamilton’s principle, and modal expansion was used to solve the equation of motion. The results showed that the location of the reamer within the BHA plays an important role in vibrations response. It was found that vibration modes that exhibit symmetry within the reamer location show a negligible effect on the overall BHA torsional response. Reamers with aggressive cutters cause higher vibration response when compared with a drill bit with the same cutter aggressiveness. The simplified model reveals the significance of properly matching the drill bit and the reamer to reduce the overall BHA torsional vibrations.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation and Analysis of Influential Parameters in Bottomhole Stick–Slip Calculation during Vertical Drilling Operations;Energies;2024-01-27

2. A New Bottom-Hole Assembly Design Method to Maintain Verticality and Reduce Lateral Vibration;Processes;2023-12-31

3. A Comparative Approach on Successive vs Simultaneous Drilling;Proceedings of the International Conference on Mechanical Engineering (ICOME 2022);2023

4. Stick-slip investigation of dual drilling and reaming bottom hole assembly;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-07-26

5. Study on the mechanism of drilling speed increase considering the axial vibration of drill string;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2020-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3