Abstract
AbstractDenoising micro-seismic signals is paramount for ensuring reliable data for localizing mining-related seismic events and analyzing the state of rock masses during mining operations. However, micro-seismic signals are commonly contaminated by various types of complex noise, which can hinder micro-seismic accurate P-wave pickup and analysis. In this study, we propose the Multiscale Dilated Convolutional Attention denoising method, referred to as MSDCAN, to eliminate complex noise interference. The MSDCAN denoising model consists of an encoder, an improved attention mechanism, and a decoder. To effectively capture the neighborhood features and multiscale features of the micro-seismic signal, we construct an initial dilated convolution block and a multiscale dilated convolution block in the encoder, and the encoder focuses on extracting the relevant feature information, thus eliminating the noise interference and improving the signal-to-noise ratio (SNR). In addition, the attention mechanism is improved and introduced between the encoder and decoder to emphasize the key features of the micro-seismic signal, thus removing the complex noise and further improving the denoising performance. The MSDCAN denoising model is trained and evaluated using micro-seismic data from Stanford University. Experimental results demonstrate an impressive increase in SNR by 11.237 dB and a reduction in root mean square error (RMSE) by 0.802. Compared to the denoising results of the DeepDenoiser, CNN-denoiser and Neighbor2Neighbor methods, the MSDCAN denoising model outperforms them by enhancing the SNR by 2.589 dB, 1.584 dB and 2dB, respectively, and reducing the RMSE by 0.219, 0.050 and 0.188, respectively. The MSDCAN denoising model presented in this study effectively improves the SNR of micro-seismic signals, offering fresh insights into micro-seismic signal denoising methodologies.
Funder
the Open Foundation of the Key Laboratory of Seismic Hazard Instrumentation and Detection Technology of Hebei Province
Langfang Science and Technology Bureau
the Fundamental Research Funds for the Central Universities
Hebei Graduate Innovation Funding Project.
Publisher
Springer Science and Business Media LLC