Multiscale dilated denoising convolution with channel attention mechanism for micro-seismic signal denoising

Author:

Cai JianxianORCID,Duan Zhijun,Wang Li,Meng Juan,Yao Zhenjing

Abstract

AbstractDenoising micro-seismic signals is paramount for ensuring reliable data for localizing mining-related seismic events and analyzing the state of rock masses during mining operations. However, micro-seismic signals are commonly contaminated by various types of complex noise, which can hinder micro-seismic accurate P-wave pickup and analysis. In this study, we propose the Multiscale Dilated Convolutional Attention denoising method, referred to as MSDCAN, to eliminate complex noise interference. The MSDCAN denoising model consists of an encoder, an improved attention mechanism, and a decoder. To effectively capture the neighborhood features and multiscale features of the micro-seismic signal, we construct an initial dilated convolution block and a multiscale dilated convolution block in the encoder, and the encoder focuses on extracting the relevant feature information, thus eliminating the noise interference and improving the signal-to-noise ratio (SNR). In addition, the attention mechanism is improved and introduced between the encoder and decoder to emphasize the key features of the micro-seismic signal, thus removing the complex noise and further improving the denoising performance. The MSDCAN denoising model is trained and evaluated using micro-seismic data from Stanford University. Experimental results demonstrate an impressive increase in SNR by 11.237 dB and a reduction in root mean square error (RMSE) by 0.802. Compared to the denoising results of the DeepDenoiser, CNN-denoiser and Neighbor2Neighbor methods, the MSDCAN denoising model outperforms them by enhancing the SNR by 2.589 dB, 1.584 dB and 2dB, respectively, and reducing the RMSE by 0.219, 0.050 and 0.188, respectively. The MSDCAN denoising model presented in this study effectively improves the SNR of micro-seismic signals, offering fresh insights into micro-seismic signal denoising methodologies.

Funder

the Open Foundation of the Key Laboratory of Seismic Hazard Instrumentation and Detection Technology of Hebei Province

Langfang Science and Technology Bureau

the Fundamental Research Funds for the Central Universities

Hebei Graduate Innovation Funding Project.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3