Modeling n-alkane solubility in supercritical CO2 via intelligent methods

Author:

Songolzadeh Reza,Shahbazi Khalil,Madani MohammadORCID

Abstract

AbstractInjection of carbon dioxide is a familiar, cost-effective and influential technology of enhancing oil recovery whose application has been limited owing to the low n-alkane solubility in supercritical CO2. Thus, determining the amount of dissolved n-alkane in supercritical CO2 is of importance. Accordingly, in this study, least-squares support vector machine (LSSVM), tuned with two different optimizing algorithms, namely particle swarm optimization (PSO) and cross-validation-assisted Simplex algorithm (CV-Simplex), has been used for this simulation process. Based on the results, the predicted values for dissolved n-alkane mole fraction in supercritical CO2 by PSO–LSSVM model were quite in line with experimental data. Furthermore, the accuracy of these models was compared with Chrastil correlation. Absolute average relative error for PSO–LSSVM, CV-Simplex–LSSVM and Chrastil was calculated to be 3.88%, 13.49% and 18.22% for total dataset, respectively, which leaves PSO–LSSVM as the superior model with the highest accuracy. Finally, the statistical parameters of absolute average relative error, mean square error and determination coefficient equal to 3.88%, 0.0164 and 0.994 for total dataset, respectively, proved that PSO–LSSVM model is an efficient method that can predict n-alkane solubility in supercritical CO2 with high precision within 8.99–45.90 MPa pressure and 308.15–344.15 K temperature range.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3