Relative permeability estimation using mercury injection capillary pressure measurements based on deep learning approaches

Author:

Duan Ce,Kang Bo,Deng Rui,Zhang Liang,Wang Lian,Xu Bing,Zhao Xing,Qu Jianhua

Abstract

AbstractRelative permeability (RP) curves which provide fundamental insights into porous media flow behavior serve as critical parameters in reservoir engineering and numerical simulation studies. However, obtaining accurate RP curves remains a challenge due to expensive experimental costs, core contamination, measurement errors, and other factors. To address this issue, an innovative approach using deep learning strategy is proposed for the prediction of rock sample RP curves directly from mercury injection capillary pressure (MICP) measurements which include the mercury injection curve, mercury withdrawal curve, and pore size distribution. To capture the distinct characteristics of different rock samples' MICP curves effectively, the Gramian Angular Field (GAF) based graph transformation method is introduced for mapping the curves into richly informative image forms. Subsequently, these 2D images are combined into three-channel red, green, blue (RGB) images and fed into a Convolutional Long Short-Term Memory (ConvLSTM) model within our established self-supervised learning framework. Simultaneously the dependencies and evolutionary sequences among image samples are captured through the limited MICP-RP samples and self-supervised learning framework. After that, a highly generalized RP curve calculation proxy framework based on deep learning called RPCDL is constructed by the autonomously generated nearly infinite training samples. The remarkable performance of the proposed method is verified with the experimental data from rock samples in the X oilfield. When applied to 37 small-sample data spaces for the prediction of 10 test samples, the average relative error is 3.6%, which demonstrates the effectiveness of our approach in mapping MICP experimental results to corresponding RP curves. Moreover, the comparison study against traditional CNN and LSTM illustrated the great performance of the RPCDL method in the prediction of both So and Sw lines in oil–water RP curves. To this end, this method offers an intelligent and robust means for efficiently estimating RP curves in various reservoir engineering scenarios without costly experiments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3