Modal state vectors of a free-hanging drilling riser during deployment and retrieval

Author:

Zhou XingkunORCID,Ge Zhengguang,Chen Jinghao,Li Wenhua

Abstract

AbstractTo prevent marine risers' resonance and eliminate potential threats, sufficient inherent dynamic characteristics such as natural frequency, modal displacement, slope, bending moment, and shear are necessary to be calculated and analyzed. However, most studies calculate the natural frequencies and modal displacements directly rather than the modal slopes and forces. The additional calculations of modal slopes and forces likely result in issue complications, time-consuming, or even errors especially when the boundaries at both ends are solved by a finite difference method. To solve the above problems, a state-vector approach is developed herein based on the precise integration method. Two traditional methods, i.e., differential transformation method and finite element method, are utilized to verify the validation of the approach. The modal state vectors of a marine drilling riser, i.e., not only modal displacements but also modal slopes, bending moments, and shears, are studied in detail under four classic cases according to the hard and soft hang-off modes and the deployment and retrieval processes. Besides, the natural frequencies versus the riser suspension lengths are investigated during the deployment and retrieval. The critical resonance suspension lengths of the riser are discussed via a double-peaked sea irregular wave spectrum. Based on the analyses presented in this study and their generic findings, powerful tools can be designed to prevent riser resonance and associated threats in operation.

Funder

National Natural Science Foundation of China

Open Project Program of Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development

Fundamental Research Funds for Central Universities

111 Project

Liaoning Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3