Effective prediction of lost circulation from multiple drilling variables: a class imbalance problem for machine and deep learning algorithms

Author:

Wood David A.ORCID,Mardanirad SajjadORCID,Zakeri HassanORCID

Abstract

AbstractMultiple machine learning (ML) and deep learning (DL) models are evaluated and their prediction performance compared in classifying five wellbore fluid-loss classes from a 20-well drilling dataset (Azadegan oil field, Iran). That dataset includes 65,376 data records with seventeen drilling variables. The dataset fluid-loss classes are heavily imbalanced (> 95% of data records belong to the less significant loss classes 1 and 2; only 0.05% of the data records belong to the complete-loss class 5). Class imbalance and the lack of high correlations between the drilling variables and fluid-loss classes pose challenges for ML/DL models. Tree-based and data matching ML algorithms outperform DL and regression-based ML algorithms in predicting the fluid-loss classes. Random forest (RF), after training and testing, makes only 35 prediction errors for all data records. Consideration of precision recall and F1-scores and expanded confusion matrices show that the RF model provides the best predictions for fluid-loss classes 1 to 3, but that for class 4 Adaboost (ADA) and class 5 decision tree (DT) outperform RF. This suggests that an ensemble of the fast to execute RF, ADA and DT models may be the best way to practically achieve reliable wellbore fluid-loss predictions. DL models underperform several ML models evaluated and are particularly poor at predicting the least represented classes 4 and 5. The DL models also require much longer execution times than the ML models, making them less attractive for field operations that require prompt information regarding rapid real-time decision responses to pending class-4 and class-5 fluid-loss events.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3