Influencing factors and microscopic formation mechanism of phase transitions of microemulsion system

Author:

Dongqi WangORCID,Daiyin Yin,Junda Wang,Yazhou Zhou,Chengli Zhang

Abstract

AbstractAs a surfactant solution system, microemulsion has attracted much attention due to its ultra-low interfacial tension, high solubilization and thermodynamic stability in the process of enhanced oil recovery. Different from water phase system of polymer flooding and ASP flooding, the microemulsion system shows a special phase state, and its existence system may be water phase, oil phase or microemulsion phase. The microemulsion phase can be divided into upper phase, middle phase and lower phase microemulsion according to the composition of the system. Different phase microemulsions have different oil displacement efficiency, and the middle phase microemulsion reaches ultra-low interfacial tension with oil/water, and the oil displacement efficiency is the highest. In order to ensure the middle-phase microemulsion flooding as far as possible during the oil displacement process, it is necessary to study the phase change process of microemulsion and the formation conditions of microemulsion in detail, and clarify the influence of surfactant concentration, additive concentration, salt content, water–oil ratio and temperature on the microemulsion phase transformation and the formation mechanism of microemulsion. The research results have some guiding significance for the formulation selection and slug design of microemulsion flooding system.

Funder

Doctoral Scientific Research Start-up Foundation from Henan University of Technology

National Natural Science Foundation of China

Nature Science Foundation of Heilongjiang Province

Excellent Scientific Research Talent Cultivation Fund Project of Northeast Petroleum University

Postdoctoral Research Initiation Fund of Heilongjiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3