Vertical height growth mechanism of hydraulic fractures in laminated shale oil reservoirs based on 3D discrete lattice modeling

Author:

Chang XinORCID,Wang Xingyi,Yang Chunhe,Guo Yintong,Wei Kai,Li Qiang,Jiang Chengbai

Abstract

AbstractBedding planes are abundant in shale oil reservoirs, but the intrinsic mechanism of fracture-height containment by these weak interfaces remains unclear. To investigate the effects of interface properties, stress conditions, and fracturing fluid viscosity on the vertical propagation of fracture heights in laminated shale oil reservoirs, a three-dimensional hydro-mechanical coupling numerical model was developed. The model is based on the 3D discrete lattice algorithm (DLA), which replaces the balls and contacts in the conventional synthetic rock mass model (SRM) with a lattice consisting of spring-connected nodes, resulting in improved computational efficiency. Additionally, the interaction between hydraulic fractures and bedding planes is automatically computed using a smooth joint model (SJM), without making any assumptions about fracture trajectories or interaction conditions. The results indicate that a higher adhesive strength of the laminated surface promotes hydraulic fracture propagation across the interface. Increasing the friction coefficient of the laminated surface from 0.15 to 0.91 resulted in a twofold increase in the fracture height. Furthermore, as the difference between vertical and horizontal principal stresses increased, the longitudinal extension distance of the fracture height significantly increased, while the activated area of the laminar surface decreased dramatically. Moreover, increasing the viscosity of the fracturing fluid led to a decrease in filtration loss along the laminar surface of the fracture and a rapid increase in net pressure, making the hydraulic fracture more likely to cross the laminar surface directly. Therefore, for heterogeneous shale oil reservoirs, a reverse-sequence fracturing technique has been proposed to enhance the length and height of the fracture. This technique involves using a high-viscosity fracturing fluid to increase the fracture height before the main construction phase, followed by a low-viscosity slickwater fracturing fluid to activate the bedding planes and promote fracture complexity. To validate the numerical modeling results, five sets of laboratory hydraulic fracturing physical simulations were conducted in Jurassic terrestrial shale. The findings revealed that as the vertical stress difference ratio increased from 0.25 to 0.6, the vertical fracture area increased by 1.98 times. Additionally, increasing both the injection displacement and the viscosity of the fracturing fluid aided in fracture height crossing of the laminar facies. These results from numerical simulation and experimental studies offer valuable insights for hydraulic fracturing design in laminated shale oil reservoirs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3