Mechanism and visualization of streamline adjustment in enhanced oil recovery: a comparative study between well pattern adjustment and polymer flooding

Author:

Li Yu,Liu HuiqingORCID,Dong Xiaohu,Wang Qing,Wang Wuchao,Wang Zhipeng

Abstract

AbstractDue to the long-term scouring of steam/water flooding, the water channels restricts the expansion of streamlines in the swept region. The formation of the main streamline, an inevitable and troublesome challenge during steam/water flooding, restrict the spread of the sweep region and the oil extraction in oil reservoirs. To realize the swept main streamlines adjustment (SA), well pattern adjustment (WPA) and polymer flooding (PF) are the mature technologies applied in the development of reservoir. The WAF and PF, as two kinds of oil extracting methods with different principles and operations, is difficult to directly verify the disturbance law to main streamlines in the same model or experimental physical field. Two-dimensional sand-packed model can elucidate the mechanism of WPA and PF for SA based on the direct processing of images and data analysis of production data. Through the oil–water distribution images from displacement experiment, the influence of viscous fingering generated by streamlines development can be obtained and described by the mathematical model to illustrate the relationship between penetration intensity and mobility ratio. In addition, the dynamic production data can reflect the change of flow resistance and water cut during the expansion of swept region. Based on observations of macro and micro perspectives, the experimental results show that the WPA greatly expands the coverage region of the streamlines, while PF makes the streamlines denser in the swept region. By comparing the distribution of streamlines between the two methods, the different shapes of streamlines are deeply influenced by the mobility ratio that determines the viscous fingering and the well pattern type. Finally, the adaptability of different methods for extracting the remaining oil is proposed. The WPA pays attention to improving the macro sweep efficiency outside the swept region. Meanwhile, the PF strategy pays more attention to improving the micro sweep efficiency in the swept region. The analysis of single-factor shows that viscous fingering has an obvious interference effect on the streamline morphology development, which highlights the meaning and importance of using the synergistic effect of WPA and PF to enhance oil recovery.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3