Estimation of tensile and uniaxial compressive strength of carbonate rocks from well-logging data: artificial intelligence approach

Author:

Ibrahim Ahmed Farid,Hiba Moaz,Elkatatny SalaheldinORCID,Ali Abdulwahab

Abstract

AbstractThe uniaxial compressive strength (UCS) and tensile strength (T0) are crucial parameters in field development and excavation projects. Traditional lab-based methods for directly measuring these properties face practical challenges. Therefore, non-destructive techniques like machine learning have gained traction as innovative tools for predicting these parameters. This study leverages machine learning methods, specifically random forest (RF) and decision tree (DT), to forecast UCS and T0 using real well-logging data sourced from a Middle East reservoir. The dataset comprises 2600 data points for model development and over 600 points for validation. Sensitivity analysis identified gamma-ray, compressional time (DTC), and bulk density (ROHB) as key factors influencing the prediction. Model accuracy was assessed using the correlation coefficient (R) and the absolute average percentage error (AAPE) against actual parameter profiles. For UCS prediction, both RF and DT achieved R values of 0.97, with AAPE values at 0.65% for RF and 0.78% for DT. In T0 prediction, RF yielded R values of 0.99, outperforming DT's 0.93, while AAPE stood at 0.28% for RF and 1.4% for DT. These outcomes underscore the effectiveness of both models in predicting strength parameters from well-logging data, with RF demonstrating superior performance. These models offer the industry an economical and rapid tool for accurately and reliably estimating strength parameters from well-logging data.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3