The effect of high-temperature environment on the rheology and filtration properties of Rhizophora spp. tannin-lignosulfonate as bio-based additive in water-based drilling fluid

Author:

Ghazali Nurul AimiORCID,Naganawa Shigemi,Masuda YoshihiroORCID

Abstract

AbstractBentonite suspension in water-based drilling fluid is susceptible to deterioration in high-temperature environments, hence requiring a deflocculant to stabilize the solid particles. Considering the use of highly toxic chrome-based deflocculant in the industry, Rhizophora spp. tannin-lignosulfonate (RTLS) was synthesized in this study as an alternative deflocculant. A viscometer was used to study the rheological properties, and the filtration performance was evaluated using low-pressure low-temperature and high-pressure high-temperature filter press in accordance with the American Petroleum Institute standard procedure. The addition of 0.5 wt% RTLS to water-based drilling fluid (WBDF) was effective in a significant reduction of the plastic viscosity (PV) and yield point (YP) of WBDF at elevated temperatures. As the amount of RTLS added to the suspension exceeds 0.5 wt%, the effect on PV and YP becomes negligible. A higher fluid loss of 13 mL was observed in the WBDF without RTLS aged at 177 °C. The addition of 2.0 wt% RTLS reduced the fluid loss to 10.7 mL. This suggests that RTLS is an effective deflocculant that can be used to improve the filtration properties of WBDF at high temperatures. The morphology of RTLS filter cakes was examined using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX). The interlayer between clay particles was identified as RTLS, a natural additive that plays a vital role in enhancing filtration while minimizing fluid loss. The outcomes of this research are promising, and this non-toxic deflocculant has the potential to replace chrome-based deflocculants that are still in use for borehole drilling.

Funder

Japan Society for the Promotion of Science

Ministry of Higher Education, Malaysia

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3