Condensate banking removal: study on ultrasonic amplitude effect

Author:

Ainuddin Aieshah,Aziz Nabilla Afzan AbdulORCID,Soom Nor Akmal Affandy Mohamed

Abstract

AbstractHydrocarbons in a gas condensate reservoir consist of a wide variety of molecules which will react varyingly with the change of pressure inside the reservoir and wellbore. The presence of heavier ended hydrocarbons such as C5 and above, condensate banking will occur as pressure depletes. Pressure drop below dew point pressure causes condensate buildup which will give a negative impact in the productivity index of a gas condensate reservoir. Gas condensate reservoirs experience liquid drop out when pressure depletion reaches below dew point pressure. This occurrence will eventually cause condensate banking over time of production where condensate builds up in pore spaces of near-wellbore formations. Due to increase in condensate saturation, gas mobility is reduced and causes reduction of recoverable hydrocarbons. Instead of remediating production loss by using unsustainable recovery techniques, sonication is used to assist the natural flow of a gas condensate reservoir. This study aims to evaluate the effects of various ultrasonic amplitudes on condensate removal in a heterogenous glass pack in flowing conditions with varying exposure durations. Experiments were conducted by using n-Decane and a glass pack to represent condensate banking and near-wellbore area. Carbon dioxide was flowed through the pack to represent flowing gas from the reservoir after sonication of 10%, 50% and 100% amplitudes (20 kHz and 20 Watts). Analysis of results shows recovery of up to 17.36% and an areal sweep efficiency increase in 24.33% after sonication of 100% amplitude for 120 min due to reduction in viscosity. It was concluded that sweeping efficiency and reciprocal mobility ratio are increased with sonication of 100% amplitude for 120 min. This indicates that mobility of n-Decane is improved after sonication to allow higher hydrocarbon liquid production. Insights into the aspects of the mechanical wave are expected to contribute to a better understanding of tuning the sonic wave, to deliver remarkable results in a closed solid and fluid system. This form of IOR has not only proved to be an effective method to increase productivity in gas condensate wells, but it is also an environmentally sustainable and cost-effective method.

Funder

YUTP-FRG grant

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Reference50 articles.

1. Abismaıl B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6(1–2):75–83

2. Abramova AV, Abramov VO, Kuleshov SP, Timashev EO (2015) Analysis of the modern methods for enhanced oil recovery. Energy Sci Technol 3:118–148

3. Agi A, Junin R, Shirazi R, Afeez G, Yekeen N (2019) Comparative study of ultrasound assisted water and surfactant flooding. J King Saud Univ Eng Sci 31(3):296–303

4. Al-Abri, A.S., 2011. Enhanced gas condensate recovery by CO2 injection (Doctoral dissertation, Curtin University).

5. Alhomadhi E, Amro M, Almobarky M (2014) Experimental application of ultrasound waves to improved oil recovery during waterflooding. J King Saud Univ Eng Sci 26(1):103–110

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3