Identification of challenging gas-bearing reservoir based on machine learning (ML) and computed conversion-based AVO analysis: a study from Jaisalmer Sub-basin, India

Author:

Pradhan Nabanita,Datta Gupta Saurabh

Abstract

AbstractAmplitude variation with offset (AVO) analysis is an important tool for identifying natural gas-bearing reservoirs. The changes in seismic amplitudes based on the variation of density and velocity of the rock matrix are captured through the AVO analysis. The current work was performed in the Ghotaru region of the Jaisalmer Sub-basin area, where limited and discrete hydrocarbon discoveries were observed from the Lower Goru Formation during the earlier various exploration campaigns. The discrete nature of the reservoir lithofacies developed challenging scenarios for the successful exploratory campaign. The campaign encountered more difficulties because of limited advanced datasets, which affected the study to capture the extension of hydrocarbon-bearing reservoir lithofacies and its characterization towards a successful exploration campaign. This study shows the way to overcome these challenges using an existing conventional dataset. The study shows the possibility of AVO analysis using a post-stack seismic dataset. A unique conversion method from post-stack to pre-stack seismic is introduced in this study based on the uses of the integrated velocity model. An integrated, robust velocity model was developed with consideration of anisotropy factors. Introducing a machine learning-based algorithm in the petrophysical study, including the conventional approach, provides a robust validation of this work. Intercept (A) and gradient (B) are the basic outcome of AVO analysis. The well-based study and AVO analysis based on intercept (A) and gradient (B) complement each other for finding hydrocarbon-bearing reservoir rock. Cross-plots and AVO analysis show the reservoir's lithofacies extension and fluids. The study reveals the potential of natural gas retained in the Lower Goru Formation, which is composed of patchy sandstone. Two AVO classes (Class I and Class III) of gas-bearing sandstone have been identified in this study. This study presents a unique method for identifying natural gas reservoirs with limited old conventional data.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Reference52 articles.

1. Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W H Freeman Co, San Francisco

2. Aki K, Richards PG (2002) Quantitative seismology: theory and methods, 2nd edn. University Science Books, Sausalito

3. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62. https://doi.org/10.2118/942054-G

4. Awasthi A M (2002) Geophysical exploration in Jaisalmer Basin: a case history. Geohorizons: 1–6

5. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3