A geometric analysis-based approach toward mechanical analytics of multi-packer completion tubular string

Author:

Deng Tiannan,Zeng Ziqiang,Xu JiupingORCID,Wen Jinxing

Abstract

AbstractMulti-packer completion strings have played a pivotal role in secure exploitation of oil and gas, increasing production and mitigating greenhouse gas emissions. While the integration of multi-packer structures has proven advantageous in oil and gas exploration, it has introduced complexities in load distribution, consequently giving rise to safety concerns. This study undertakes a thorough examination of the mechanical analysis pertaining to multi-packer completion strings. We present an analytical model for predicting the axial forces acting on the multi-packer string, utilizing the geometric constraint arising from the immobility of packers. It is demonstrated that the pressure differentials at the packers exhibit uniqueness in relation to both initial and boundary conditions, as well as the geometrical constraint. This paper provides an analytical solution for these pressure differentials. Novel concepts regarding the eigen-matrix of an N-packer completion string, influenced solely by Poisson’s ratio, a virtual $$(N+1)$$ ( N + 1 ) th packer and the eigen-depth and eigen-ratio of two adjacent packers, are proposed and their applications are discussed. Furthermore, this paper delves into a deeper examination of the multi-packer string’s underlying mechanism. A consistent algorithm grounded in geometric analysis is developed based on the analytical model. Validation of our model is performed using three practical cases across various operation conditions, and the results demonstrate the efficacy of this methodology in accurately predicting failure occurrences. Sensitivity analysis results further substantiate the robustness of this method in practical applications. Additionally, it has been shown that strategically positioning the packers in areas where the string is highly prone to fractures significantly enhances the safety of the multi-packer string system. The findings presented in this paper offer a foundational framework for analyzing the mechanical behavior of constrained strings. Furthermore, there is potential for the development of the analytical model to incorporate additional factors, such as string system with packers of semi-free or free movement. The proposed method is also of fundamental significance for safety evaluation of string systems in carbon storage projects, which is obtaining increasing attention in the context of carbon neutralization.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3