An evolutionary optimization approach to prevent electronics burnout in subsea oil and gas equipment

Author:

Somassoundirame RamechecandaneORCID,Nithiyananthan Eswari

Abstract

AbstractThe electronics burnout in subsea engineering equipment caused by the excessive heating of electronics due to improper cooling mechanism is an area of major concern in subsea oil and gas fields. Very often the electronic canisters are encapsulated by insulation to prevent hydrate formation in the subsea completion equipment. The electronic equipment with a set of sensors is usually deployed subsea for live monitoring of data and to regulate the functioning of the equipment. This study presents a numerical methodology to predict and prevent electronics burnout in a pressure/temperature transmitter (PT/TT) that is truly representative of a wide class of PT/TT deployed subsea. An optimization study of the insulation system around the PT/TT sensors that encompasses the various contradicting constraints that are routinely encountered in subsea engineering has been presented for the benefit of the readers. In the present study, the optimal design of the insulation system around the electronics equipment is generated using a combination of thermal finite element analysis and evolutionary optimization algorithms. The results obtained show that the proposed methodology can yield results which could be a tremendous improvement in the traditional means of designing the insulation systems for such electronics equipment. It is also shown that locating the electronic housing far from the production fluid in the PT/TT sensors can lead to proper cooling and thereby avoid the burnout to a significant extent.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3