A general regression neural network model offers reliable prediction of CO2 minimum miscibility pressure
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Energy,Geotechnical Engineering and Engineering Geology
Link
http://link.springer.com/article/10.1007/s13202-015-0196-4/fulltext.html
Reference40 articles.
1. Ahmed, T (1997) A generalized methodology for minimum miscibility pressure. Paper No. SPE 39034. In: Fifth Latin American and Caribbean Petroleum Engineering Conference and Exhibition, Rio de Janeiro, Aug 30–Sep 3
2. Al-Dousari MM, Garrouch AA (2013) An artificial neural network model for predicting the recovery performance of surfactant polymer floods. J Pet Sci Eng 109:51–62
3. Alomair O, Malallah A, Elsharkawy A, Iqbal M, Predicting CO2 minimum miscibility pressure (MMP) using alternating conditional expectation (ACE) algorithm. Oil Gas Sci Technol Accepted for publication on December 2012, Published online in June 2013
4. Alston RB, Kokolis GP, James CF (1985) CO2 minimum miscibility pressure: a correlation for impure CO 2 streams and live oil systems. SPEJ April issue:268–75
5. Alvarado V, Manrique E (2010) Enhanced oil recovery: an update review. Energies 3:1529–1575
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Utilizing Artificial Intelligence Techniques for Modeling Minimum Miscibility Pressure in Carbon Capture and Utilization Processes: A Comprehensive Review and Applications;Energy & Fuels;2024-07-25
2. Optimizing Minimum Miscibility Pressure Prediction Using Machine Learning: A Comprehensive Evaluation and Validation;Energy & Fuels;2024-05-10
3. Development of multiple explicit data-driven models for accurate prediction of CO2 minimum miscibility pressure;Chemical Engineering Research and Design;2024-05
4. A Comprehensive Summary of the Application of Machine Learning Techniques for CO2-Enhanced Oil Recovery Projects;Machine Learning and Knowledge Extraction;2024-04-29
5. Catalyzing net-zero carbon strategies: Enhancing CO2 flux Prediction from underground coal fires using optimized machine learning models;Journal of Cleaner Production;2024-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3