Artificial neural network models for reservoir-aquifer dimensionless variables: influx and pressure prediction for water influx calculation

Author:

Okon Anietie NdarakeORCID,Ansa Idongesit Bassey

Abstract

AbstractCalculation of water influx into petroleum reservoir is a tedious evaluation with significant reservoir engineering applications. The classical approach developed by van Everdingen–Hurst (vEH) based on diffusivity equation solution had been the fulcrum for water influx calculation in both finite and infinite-acting aquifers. The vEH model for edge-water drive reservoirs was modified by Allard and Chen for bottom-water drive reservoirs. Regrettably, these models solution variables: dimensionless influx ($$W_{{{\text{eD}}}}$$ W eD ) and dimensionless pressure ($$P_{D}$$ P D ) were presented in tabular form. In most cases, table look-up and interpolation between time entries are necessary to determine these variables, which makes the vEH approach tedious for water influx estimation. In this study, artificial neural network (ANN) models to predict the reservoir-aquifer variables $$W_{{{\text{eD}}}}$$ W eD and $$P_{D}$$ P D was developed based on the vEH datasets for the edge- and bottom-water finite and infinite-acting aquifers. The overall performance of the developed ANN models correlation coefficients (R) was 0.99983 and 0.99978 for the edge- and bottom-water finite aquifer, while edge- and bottom-water infinite-acting aquifer was 0.99992 and 0.99997, respectively. With new datasets, the generalization capacities of the developed models were evaluated using statistical tools: coefficient of determination (R2), R, mean square error (MSE), root-mean-square error (RMSE) and absolute average relative error (AARE). Comparing the developed finite aquifer models predicted $$W_{{{\text{eD}}}}$$ W eD with Lagrangian interpolation approach resulted in R2, R, MSE, RMSE and AARE of 0.9984, 0.9992, 0.3496, 0.5913 and 0.2414 for edge-water drive and 0.9993, 0.9996, 0.1863, 0.4316 and 0.2215 for bottom-water drive. Also, infinite-acting aquifer models (Model-1) resulted in R2, R, MSE, RMSE and AARE of 0.9999, 0.9999, 0.5447, 0.7380 and 0.2329 for edge-water drive, while bottom-water drive had 0.9999, 0.9999, 0.2299, 0.4795 and 0.1282. Again, the edge-water infinite-acting model predicted $$W_{{{\text{eD}}}}$$ W eD and Edwardson et al. polynomial estimated $$W_{eD}$$ W eD resulted in the R2 value of 0.9996, R of 0.9998, MSE of 4.740 × 10–4, RMSE of 0.0218 and AARE of 0.0147. Furthermore, the developed ANN models generalization performance was compared with some models for estimating $$P_{D}$$ P D . The results obtained for finite aquifer model showed the statistical measures: R2, R, MSE, RMSE and AARE of 0.9985, 0.9993, 0.0125, 0.1117 and 0.0678 with Chatas model and 0.9863, 0.9931, 0.1411, 0.3756 and 0.2310 with Fanchi equation. The infinite-acting aquifer model had 0.9999, 0.9999, 0.1750, 0.0133 and 7.333 × 10–3 with Edwardson et al. polynomial, then 0.9865, 09,933, 0.0143, 0.1194 and 0.0831 with Lee model and 0.9991, 0.9996, 1.079 × 10–3, 0.0328 and 0.0282 with Fanchi model. Therefore, the developed ANN models can predict $$W_{{{\text{eD}}}}$$ W eD and $$P_{D}$$ P D for the various aquifer sizes provided by vEH datasets for water influx calculation.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3