Application of seismic attribute analysis in fluvial seismic geomorphology

Author:

Hossain Shakhawat

Abstract

AbstractSeismic attributes can be important predictors, either qualitative or quantitative, of reservoir geometries when they are correctly used in reservoir characterization studies. This paper discusses seismic attribute analyses and their usefulness in seismic geomorphology study of Moragot field of Pattani Basin, Gulf of Thailand. Early to Middle Miocene fluvial channel and overbank sands are the reservoirs in Pattani Basin. Due to their limited horizontal and vertical distribution, it is not always possible to predict the geometry and distribution of these sands based on the conventional seismic interpretation. This study utilized various seismic attributes, e.g., RMS amplitude analysis, spectral decomposition, semblance and dip-steered similarity, RGB blending to image the geometry and the spatial distribution of sand bodies in horizon and stratal slices at different stratigraphic intervals. Attribute analyses reveal, at shallow stratigraphic levels, RMS and semblance can successfully identify channel-shaped sand bodies and mud-filled channels associated with channel belts. On the other hand in deeper stratigraphic intervals, sand distribution can be imaged more effectively by using spectral decomposition and dip-steered similarity volumes. High-frequency spectral decomposition slices can image thin sands, and low-frequency slices can image thick sands quite effectively in deeper intervals. RGB blending of different frequency slices is particularly useful in delineating channel systems of various dimensions at deeper intervals. These images show the distribution of sands and mud-filled channels at various stratigraphic levels. The width of channel belts varies from 200 m to 3 km. These channel belts are N–S or NW–SE oriented. From the channel pattern and their dimensions, depositional environments can be predicted. Mud-filled channels identified in the horizon slices will act as a connectivity barrier between sand bodies at either side of the channel. They can also act as lateral and up-dip seal to form stratigraphic traps. The seismic attribute analyses clearly show the geometry and spatial distribution of sand bodies. Hence, this method for predicting sand body geometry might help in field development planning as well as in reducing exploration risk.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3