On the injectivity estimation in foam EOR

Author:

Quinelato Thiago O.,de Paula Filipe F.,Igreja Iury,Lozano Luis F.,Chapiro GrigoriORCID

Abstract

AbstractIn this work, we study injectivity issues caused by the use of the Peaceman equation in the numerical simulation of chemical enhanced oil recovery (EOR) processes aimed at reducing fluid mobility, such as foam injection, on coarse grids. Employing analytical solutions, we demonstrate that the Peaceman equation, commonly applied to mathematical modeling of the injectivity in commercial simulators, leads to errors of more than two orders of magnitude in the injection well pressure drop when the foam flow effects near the well are considered for assuming homogeneous mobility in a coarse-well block. To circumvent this issue, we investigate numerical treatments focused on the grid of well blocks through local grid partitioning strategies (radial and Cartesian) to improve the injection well bottom-hole pressure (BHP) estimation. This methodology does not change the input data nor the injectivity model characteristics of the commercial simulator. It does not significantly affect the computational cost of the simulation, since the grid treatment occurs only in the blocks containing the wells. Thus, the radial and Cartesian grid partitioning for the well block are compared using the STARS simulator. Our results show the clear capability of the methodology to reduce the well BHP overestimation, mitigating the errors caused by the Peaceman equation. Indeed, in some simulated scenarios, the BHP overestimation was reduced a hundredfold after applying the partitioning technique. Furthermore, we discuss the choice of simulation parameters leading to more accurate and numerically stable results.

Funder

Shell

CNPq

FAPEMIG

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3