Estimation of porosity and volume of shale using artificial intelligence, case study of Kashafrud Gas Reservoir, NE Iran

Author:

Ardebili Pooya Naghizadeh,Jozanikohan GolnazORCID,Moradzadeh Ali

Abstract

AbstractThe key problem in oil exploration and engineering is the lack of accurate and reliable data about the reservoir parameters of a field. Having a precise assessment of petrophysical properties can provide the ability to make decisions with a high degree of confidence about planning for production, exploitation, and further field development scenario. In this research, an artificial intelligence (AI)-based approach was developed to improve the estimation of reservoir parameters including porosity and volume of shale, which has a significant role in different stages of hydrocarbon exploration, in the Kashafrud Gas Reservoir in the northeast of Iran. For this purpose, we measured the petrophysical properties of 27 samples of the Kashafrud Formation. To increase the amount of data for employing a multilayer perceptron (MLP) artificial neural network (ANN), a geostatistical algorithm was used to increase the amount of laboratory measured data of porosity and volume of shale to 686 and 702, respectively. In addition, 2263 well-logging data from the same well were provided. The optimal MLP network with the topology of 6-7-1, and 6-8-1 was selected to estimate the porosity and shale volume with mean squared error (MSE) of 2.78731E−4, and 1.28701E−9, respectively. The training process was performed using two different sets of input data. In the first approach, all available well-logging data were used as input, ending up in high MSE. In the second approach, some selected well logs were used based on the results of sensitivity analysis which clearly improved the estimations. The ability of MLP networks made great improvements in the estimation of the both parameters up to 99.9%. The presence of valuable core data in this study significantly improved the process of comparison and conclusion. The final results prove that AI is a trusted method, also the potential of the ANN method for the reservoir characterization and evaluation associated problems should be taken into consideration. Due to the unavailability of core data along the whole wells, the application of intelligent methods, such as machine learning (ML) can be used to estimate the parameters in other oil or gas fields and wells.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3