The impact of permeability heterogeneity on water-alternating-gas displacement in highly stratified heterogeneous reservoirs

Author:

Khan Mohammad YunusORCID,Mandal Ajay

Abstract

AbstractAvailability of gases at the field level makes attractive to water-alternating-gas (WAG) process for low viscosity and light oils carbonate reservoir. However, impact of reservoir heterogeneity on WAG performance is crucial before field application. In general, ramp carbonates have heterogeneity due to variation of permeability and porosity. However, WAG performance significantly affected by permeability variations. This article investigates merits and demerits of WAG displacement due to permeability heterogeneities such as permeability anisotropy, high permeability streaks (HKS), matrix permeability, dolomite and thin dense stylolite layers. High-resolution compositional simulations with tuned equation of state (EoS) were carried out using 2D and 3D sector models. The study focuses on WAG performance in terms of oil recovery, vertical sweep, solvent utilization, gas oil ratio (GOR), water cut (WCT), WAG response time, gravity override, hysteresis, un-contacted oil saturation and economics. The results of simulation show that the heterogeneous reservoir provides initially faster WAG response, lower expected ultimate recovery (EUR), faster gas breakthrough, higher GOR and WCT production compared to homogeneous reservoir. The gas gravity override at smaller wells spacing is less in homogeneous reservoir as compared to heterogeneous reservoir, but it is reverse in case of larger well spacing. In heterogeneous reservoir, the HKS shows significant gas override resulting in poor vertical sweep due to capillary holding, and the high permeability dolomite layer shows early water breakthrough. This reservoir has higher solvent utilization in initial stage, and then, it becomes nearly equal to homogeneous reservoir. Simulation in both reservoirs overestimates incremental recovery of 2–3% OOIP at one pore volume injection because of not involving un-contacted oil saturation as predicted in core flood. The findings of this study will help to understand WAG performance and design in highly heterogeneous reservoirs for field applications. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Reference138 articles.

1. Adeoye, O. M., Gerges, N., Bin Ujal , N. N., Noordin, F. B., El Din, S. S., Ismail, A. M., ... & Yaslam, M. M. (2015, November). Integrated evaluation approach and implications of high permeability streaks in giant carbonate oilfield. In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers.

2. Afzali S, Rezaei N, Zendehboudi S (2018) A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection. Fuel 227:218–246

3. Ahdaya, M., & Imqam, A. (2020, June). Miscible Gas Injection Application for Enhanced oil Recovery: Data Analysis. In 54th US Rock Mechanics/Geomechanics Symposium. OnePetro.

4. Ahmed, T. (2018). Reservoir engineering handbook. Gulf Professional Publishing.

5. Akbar M, Petricola M, Watfa M, Badri M, Charara M, Boyd A, Kenyon B (1995) Classic interpretation problems: evaluating carbonates. Oilfield Review 7(1):38–57

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3