Abstract
AbstractPorosity is the dominant factor that determines the exploitable capacity of sedimentary reservoir rocks. Generally, pore heterogeneity is poorly represented in subsurface geological models due to the complexity. Granular mixtures produce complex pore space controlled by grain size, grain shape, and grain sorting. Heterogeneities in pore space volume are present at micro- and nanoscales in granular mixtures due to packing conditions resulting from deposition and diagenesis. In the present study, three-dimensional packing models were generated to provide a realistic description of granular mixtures. Accordingly, this study presents static packing models for unit cells idealised for spherical and elongated grains using cubic, orthorhombic, and rhombohedral packing models. Subsequently, the grain shape effects in terms of elongation degree and grain size distribution in terms of the degree of sorting were evaluated. The mixing effect on the inter-granular porosity for each unit cell packing model was analysed. A range of porosity values was derived using grain parameters generated through in-house developed MATLAB codes from digital FESEM images of sandstone samples. Our study demonstrates that actual grain size does not influence porosity, but for real sandstone samples, the sorting and shape of grains affect porosity values. The range of porosity values estimated by this method can be realistic at the basin level as the grain shape effects replicate sediment maturity. The developed method can be adopted in the distributed spatial models on porosity, especially for basin-scale hydrocarbon resource estimation.
Publisher
Springer Science and Business Media LLC
Subject
General Energy,Geotechnical Engineering and Engineering Geology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献